1932

Abstract

Mosquito-transmitted diseases, including malaria and dengue, are a major threat to human health around the globe, affecting millions each year. A diverse array of next-generation tools has been designed to eliminate mosquito populations or to replace them with mosquitoes that are less capable of transmitting key pathogens. Many of these new approaches have been built on recent advances in CRISPR/Cas9-based genome editing. These initiatives have driven the development of pathogen-resistant lines, new genetics-based sexing methods, and new methods of driving desirable genetic traits into mosquito populations. Many other emerging tools involve microorganisms, including two strategies involving that are achieving great success in the field. At the same time, other mosquito-associated bacteria, fungi, and even viruses represent untapped sources of new mosquitocidal or antipathogen compounds. Although there are still hurdles to be overcome, the prospect that such approaches will reduce the impact of these diseases is highly encouraging.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-011320-025557
2020-09-08
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-011320-025557.html?itemId=/content/journals/10.1146/annurev-micro-011320-025557&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adelman ZN, Jasinskiene N, Onal S, Juhn J, Ashikyan A et al. 2007. Nanos gene control DNA mediates developmentally regulated transposition in the yellow fever mosquito Aedes aegypti. . PNAS 104:9970–75
    [Google Scholar]
  2. 2. 
    Afify A, Betz JF, Riabinina O, Lahondere C, Potter CJ 2019. Commonly used insect repellents hide human odors from Anopheles mosquitoes. Curr. Biol. 29:3669–80.e5
    [Google Scholar]
  3. 3. 
    Agboli E, Leggewie M, Altinli M, Schnettler E 2019. Mosquito-specific viruses—transmission and interaction. Viruses 11:873
    [Google Scholar]
  4. 4. 
    Allgeier S, Friedrich A, Bruhl CA 2019. Mosquito control based on Bacillus thuringiensis israelensis (Bti) interrupts artificial wetland food chains. Sci. Total Environ. 686:1173–84
    [Google Scholar]
  5. 5. 
    Alphey L, Benedict M, Bellini R, Clark GG, Dame DA et al. 2010. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector-Borne Zoonotic Dis 10:295–311Evaluates the prospects of sterile insect releases for mosquito control.
    [Google Scholar]
  6. 6. 
    Amenya DA, Bonizzoni M, Isaacs AT, Jasinskiene N, Chen H et al. 2010. Comparative fitness assessment of Anopheles stephensi transgenic lines receptive to site-specific integration. Insect Mol. Biol. 19:263–69
    [Google Scholar]
  7. 7. 
    Anderson ME, Mavica J, Shackleford L, Flis I, Fochler S et al. 2019. CRISPR/Cas9 gene editing in the West Nile Virus vector, Culex quinquefasciatus Say. PLOS ONE 14:e0224857
    [Google Scholar]
  8. 8. 
    Ayala D, Akone-Ella O, Rahola N, Kengne P, Ngangue MF et al. 2019. Natural Wolbachia infections are common in the major malaria vectors in Central Africa. Evol. Appl. 12:1583–94
    [Google Scholar]
  9. 9. 
    Basu S, Aryan A, Overcash JM, Samuel GH, Anderson MAE et al. 2015. Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti. . PNAS 112:4038–43
    [Google Scholar]
  10. 10. 
    Benedict MQ, Burt A, Capurro ML, De Barro P, Handler AM et al. 2018. Recommendations for laboratory containment and management of gene drive systems in arthropods. Vector-Borne Zoonotic Dis 18:2–13
    [Google Scholar]
  11. 11. 
    Bernardini F, Galizi R, Menichelli M, Papathanos PA, Dritsou V et al. 2014. Site-specific genetic engineering of the Anopheles gambiae Y chromosome. PNAS 111:7600–5
    [Google Scholar]
  12. 12. 
    Berry C. 2012. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J. Invert. Pathol. 109:1–10
    [Google Scholar]
  13. 13. 
    Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW et al. 2013. The global distribution and burden of dengue. Nature 496:504–7
    [Google Scholar]
  14. 14. 
    Buchman A, Gamez S, Li M, Antoshechkin I, Lee S et al. 2019. Broad dengue neutralization in mosquitoes expressing an engineered antibody. bioRxiv 645481
  15. 15. 
    Buchman A, Gamez S, Li M, Antoshechkin I, Li HH et al. 2019. Engineered resistance to Zika virus in transgenic Aedes aegypti expressing a polycistronic cluster of synthetic small RNAs. PNAS 116:3656–61
    [Google Scholar]
  16. 16. 
    Burt A. 2003. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. R. Soc. B 270:921–28
    [Google Scholar]
  17. 17. 
    Carballar-Lejarazu R, James AA. 2017. Population modification of Anopheline species to control malaria transmission. Pathog. Glob. Health 111:424–35
    [Google Scholar]
  18. 18. 
    Carvajal TM, Hashimoto K, Harnandika RK, Amalin DM, Watanabe K 2019. Detection of Wolbachia in field-collected Aedes aegypti mosquitoes in metropolitan Manila, Philippines. Parasites Vectors 12:361
    [Google Scholar]
  19. 19. 
    Carvalho DO, McKemey AR, Garziera L, Lacroix R, Donnelly CA et al. 2015. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLOS Negl. Trop. Dis. 9:e0003864
    [Google Scholar]
  20. 20. 
    Chaverra-Rodriguez D, Macias VM, Hughes GL, Pujhari S, Suzuki Y et al. 2018. Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nat. Commun. 9:3008
    [Google Scholar]
  21. 21. 
    Chrostek E, Gerth M. 2019. Is Anopheles gambiae a natural host of Wolbachia. mBio 10:e00784–19
    [Google Scholar]
  22. 22. 
    Chung HN, Rodriguez SD, Gonzales KK, Vulcan J, Cordova JJ et al. 2018. Toward implementation of mosquito sterile insect technique: the effect of storage conditions on survival of male Aedes aegypti mosquitoes (Diptera: Culicidae) during transport. J. Insect Sci. 18:2Outlines optimized parameters for releasing laboratory-reared sterile males in the field.
    [Google Scholar]
  23. 23. 
    Clayton AM, Dong Y, Dimopoulos G 2014. The Anopheles innate immune system in the defense against malaria infection. J. Innate Immun. 6:169–81
    [Google Scholar]
  24. 24. 
    Corby-Harris V, Drexler A, de Jong LW, Antonova Y, Pakpour N et al. 2010. Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes. PLOS Pathog 6:e1001003
    [Google Scholar]
  25. 25. 
    Criscione F, Qi YM, Tu ZJ 2016. GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi. . eLife 5:e19281
    [Google Scholar]
  26. 26. 
    Deredec A, Godfray HC, Burt A 2011. Requirements for effective malaria control with homing endonuclease genes. PNAS 108:E874–80
    [Google Scholar]
  27. 27. 
    DiCarlo JE, Chavez A, Dietz SL, Esvelt KM, Church GM 2015. Safeguarding CRISPR-Cas9 gene drives in yeast. Nat. Biotechnol. 33:1250–55
    [Google Scholar]
  28. 28. 
    Dong SZ, Balaraman V, Kantor AM, Lin JY, Grant DG et al. 2017. Chikungunya virus dissemination from the midgut of Aedes aegypti is associated with temporal basal lamina degradation during bloodmeal digestion. PLOS Negl. Trop. Dis. 11:e000597
    [Google Scholar]
  29. 29. 
    Dong SZ, Lin JY, Held NL, Clem RJ, Passarelli AL, Franz AWE 2015. Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito. Aedes aegypti. PLOS ONE 10:e0122353
    [Google Scholar]
  30. 30. 
    Dong YM, Das S, Cirimotich C, Souza-Neto JA, McLean KJ, Dimopoulos G 2011. Engineered Anopheles immunity to Plasmodium infection. PLOS Pathog 7:e1002458
    [Google Scholar]
  31. 31. 
    Dong YM, Simões ML, Marois E, Dimopoulos G 2018. CRISPR/Cas9-mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection. PLOS Pathog 14:e1006898A transgenic Anopheles gambiae line was developed that is highly resistant to Plasmodium infection.
    [Google Scholar]
  32. 32. 
    Enkerlin W, Gutierrez-Ruelas JM, Cortes AV, Roldan EC, Midgarden D et al. 2015. Area freedom in Mexico from Mediterranean fruit fly (Diptera: Tephritidae): a review of over 30 years of a successful containment program using an integrated area-wide SIT approach. Fla. Entomol. 98:665–81
    [Google Scholar]
  33. 33. 
    Fradin MS, Day JF. 2002. Comparative efficacy of insect repellents against mosquito bites. N. Engl. J. Med. 347:13–18
    [Google Scholar]
  34. 34. 
    Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ et al. 2006. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. . PNAS 103:4198–203
    [Google Scholar]
  35. 35. 
    Galizi R, Doyle LA, Menichelli M, Bernardini F, Deredec A et al. 2014. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat. Commun. 5:3977
    [Google Scholar]
  36. 36. 
    Galizi R, Hammond A, Kyrou K, Taxiarchi C, Bernardini F et al. 2016. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci. Rep. 6:31139
    [Google Scholar]
  37. 37. 
    Gantz VM, Bier E. 2015. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348:442–44
    [Google Scholar]
  38. 38. 
    Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM et al. 2015. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. . PNAS 112:E6736–43Describes a major advance in mosquito gene-drive technology.
    [Google Scholar]
  39. 39. 
    Garcia GD, Sylvestre G, Aguiar R, da Costa GB, Martins AJ et al. 2019. Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion. PLOS Negl. Trop. Dis. 13:e0007023
    [Google Scholar]
  40. 40. 
    Ghosh AK, Coppens I, Gardsvoll H, Ploug M, Jacobs-Lorena M 2011. Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut. PNAS 108:17153–58
    [Google Scholar]
  41. 41. 
    Gorman K, Young J, Pineda L, Marquez R, Sosa N et al. 2015. Short-term suppression of Aedes aegypti using genetic control does not facilitate Aedes albopictus. Pest Manag. . Sci 72:618–28
    [Google Scholar]
  42. 42. 
    Gregory M, Alphey L, Morrison NI, Shimeld SM 2016. Insect transformation with piggyBac: getting the number of injections just right. Insect Mol. Biol. 25:259–71
    [Google Scholar]
  43. 43. 
    Häcker I, Harrell RA, Eichner G, Pilitt KL, O'Brochta DA et al. 2017. Cre/lox-recombinase-mediated cassette exchange for reversible site-specific genomic targeting of the disease vector. Aedes aegypti. Sci. Rep. 7:43883
    [Google Scholar]
  44. 44. 
    Haghighat-Khah RE, Scaife S, Martins S, St John O, Matzen KJ et al. 2015. Site-specific cassette exchange systems in the Aedes aegypti mosquito and the Plutella xylostella moth. PLOS ONE 10:e0121097
    [Google Scholar]
  45. 45. 
    Hall AB, Basu S, Jiang XF, Qi YM, Timoshevskiy VA et al. 2015. A male-determining factor in the mosquito Aedes aegypti. . Science 348:1268–70
    [Google Scholar]
  46. 46. 
    Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C et al. 2016. A CRISPR-Cas9 gene drive system-targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. . Biotechnol 34:78–83
    [Google Scholar]
  47. 47. 
    Hammond AM, Galizi R. 2017. Gene drives to fight malaria: current state and future directions. Pathog. Glob. Health 111:412–23
    [Google Scholar]
  48. 48. 
    Hammond AM, Kyrou K, Bruttini M, North A, Galizi R et al. 2017. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLOS Genet 13:e1007039
    [Google Scholar]
  49. 49. 
    Harms A, Brodersen DE, Mitarai N, Gerdes K 2018. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol. Cell 70:768–84
    [Google Scholar]
  50. 50. 
    Harris AF, McKemey AR, Nimmo D, Curtis Z, Black I et al. 2012. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat. Biotechnol. 30:828–30
    [Google Scholar]
  51. 51. 
    Helinski MEH, Knols BGJ. 2008. Mating competitiveness of male Anopheles arabiensis mosquitoes irradiated with a partially or fully sterilizing dose in small and large laboratory cages. J. Med. Entomol. 45:698–705
    [Google Scholar]
  52. 52. 
    Indriani C, Ahmad RA, Wiratama BS, Arguni E, Supriyati E et al. 2018. Baseline characterization of dengue epidemiology in Yogyakarta City, Indonesia, before a randomized controlled trial of Wolbachia for arboviral disease control. Am. J. Trop. Med. Hyg. 99:1299–307
    [Google Scholar]
  53. 53. 
    Isaacs AT, Jasinskiene N, Tretiakov M, Thiery I, Zettor A et al. 2012. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development. PNAS 109:E1922–30
    [Google Scholar]
  54. 54. 
    Isaacs AT, Li FW, Jasinskiene N, Chen XG, Nirmala X et al. 2011. Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi. . PLOS Pathog 7:e1002017
    [Google Scholar]
  55. 55. 
    James S, Collins FH, Welkhoff PA, Emerson C, Godfray HCJ et al. 2018. Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in sub-Saharan Africa: recommendations of a scientific working group. Am. J. Trop. Med. Hyg. 98:1–49
    [Google Scholar]
  56. 56. 
    Jeffries CL, Lawrence GG, Golovko G, Kristan M, Orsborne J et al. 2018. Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa [version 2]. Wellcome Open Res 3:113
    [Google Scholar]
  57. 57. 
    Johnson RM, Rasgon JL. 2018. Densonucleosis viruses (‘densoviruses’) for mosquito and pathogen control. Curr. Opin. Insect Sci. 28:90–97
    [Google Scholar]
  58. 58. 
    Jupatanakul N, Sim S, Anglero-Rodriguez YI, Souza-Neto J, Das S et al. 2017. Engineered Aedes aegypti JAK/STAT pathway-mediated immunity to dengue virus. PLOS Negl. Trop. Dis. 11:e0005187
    [Google Scholar]
  59. 59. 
    Kajla MK, Barrett-Wilt GA, Paskewitz SM 2019. Bacteria: a novel source for potent mosquito feeding-deterrents. Sci. Adv. 5:eaau6141
    [Google Scholar]
  60. 60. 
    Kistler KE, Vosshall LB, Matthews BJ 2015. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. . Cell Rep 11:51–60One of the first publications describing CRISPR/Cas9-based genome editing in mosquitoes.
    [Google Scholar]
  61. 61. 
    Kittayapong P, Kaeothaisong NO, Ninphanomchai S, Limohpasmanee W 2018. Combined sterile insect technique and incompatible insect technique: sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Parasites Vectors 11:657
    [Google Scholar]
  62. 62. 
    Kittayapong P, Ninphanomchai S, Limohpasmanee W, Chansang C, Chansang U, Mongkalangoon P 2019. Combined sterile insect technique and incompatible insect technique: the first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLOS Negl. Trop. Dis. 13:e0007771
    [Google Scholar]
  63. 63. 
    Kokoza VA, Raikhel AS. 2011. Targeted gene expression in the transgenic Aedes aegypti using the binary Gal4-UAS system. Insect Biochem. Mol. Biol. 41:637–44
    [Google Scholar]
  64. 64. 
    Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A et al. 2018. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36:1062–66Successful population suppression using gene drive targeting sex differentiation.
    [Google Scholar]
  65. 65. 
    Labbe GMC, Nimmo DD, Alphey L 2010. piggybac- and PhiC31-mediated genetic transformation of the Asian tiger mosquito, Aedes albopictus (Skuse). PLOS Negl. Trop. Dis. 4:e788
    [Google Scholar]
  66. 66. 
    Laing R, Gillan V, Devaney E 2017. Ivermectin—old drug, new tricks. Trends Parasitol 33:463–72
    [Google Scholar]
  67. 67. 
    Leftwich PT, Edgington MP, Harvey-Samuel T, Carabajal Paladino LZ, Norman VC, Alphey L 2018. Recent advances in threshold-dependent gene drives for mosquitoes. Biochem. Soc. Trans. 46:1203–12
    [Google Scholar]
  68. 68. 
    Li FW, Patra KP, Vinetz JM 2005. An anti-chitinase malaria transmission-blocking single-chain antibody as an effector molecule for creating a Plasmodium falciparum-refractory mosquito. J. Infect. Dis. 192:878–87
    [Google Scholar]
  69. 69. 
    Li M, Akbari OS, White BJ 2018. Highly efficient site-specific mutagenesis in malaria mosquitoes using CRISPR. G3: Genes, Genomes, Genet 8:653–58
    [Google Scholar]
  70. 70. 
    Li M, Bui M, Yang T, Bowman CS, White BJ, Akbari OS 2017. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector. Aedes aegypti. PNAS 114:E10540–49
    [Google Scholar]
  71. 71. 
    Li M, Yang T, Kandul NP, Bui M, Gamez S et al. 2020. Development of a confinable gene drive system in the human disease vector Aedes aegypti. . eLife 9:e51701
    [Google Scholar]
  72. 72. 
    Lofgren CS, Dame DA, Breeland SG, Weidhaas DE, Jeffery G et al. 1974. Release of chemosterilized males for control of Anopheles-Albimanus in El-Salvador: 3. Field methods and population-control. Am. J. Trop. Med. Hyg. 23:288–97
    [Google Scholar]
  73. 73. 
    Lovett B, Bilgo E, Millogo SA, Ouattarra AK, Sare I et al. 2019. Transgenic Metarhizium rapidly kills mosquitoes in a malaria-endemic region of Burkina Faso. Science 364:894–97Describes the mosquitocidal properties of a transgenic fungus in a semifield trial in Burkina Faso.
    [Google Scholar]
  74. 74. 
    Lucas KJ, Roy S, Ha J, Gervaise AL, Kokoza VA, Raikhel AS 2015. MicroRNA-8 targets the Wingless signaling pathway in the female mosquito fat body to regulate reproductive processes. PNAS 112:1440–45
    [Google Scholar]
  75. 75. 
    Lycett GJ, Kafatos FC, Loukeris TG 2004. Conditional expression in the malaria mosquito Anophels stephensi with Tet-On and Tet-Off systems. Genetics 167:1781–90
    [Google Scholar]
  76. 76. 
    Lynd A, Lycett GJ. 2012. Development of the bi-partite Gal4-UAS system in the African malaria mosquito. Anopheles gambiae. PLOS ONE 7:e31552
    [Google Scholar]
  77. 77. 
    Macias VM, McKeand S, Chaverra-Rodriguez D, Hughes GL, Fazekas A et al. 2019. Cas9-mediated gene-editing in the malaria mosquito Anopheles stephensi by ReMOT Control. bioRxiv 775312
  78. 78. 
    Macias VM, Ohm JR, Rasgon JL 2017. Gene drive for mosquito control: Where did it come from and where are we headed. Int. J. Environ. Res. Public Health 14:E1006
    [Google Scholar]
  79. 79. 
    Mains JW, Brelsfoard CL, Rose RI, Dobson SL 2016. Female adult Aedes albopictus suppression by Wolbachia-infected male mosquitoes. Sci. Rep. 6:33846
    [Google Scholar]
  80. 80. 
    Mains JW, Kelly PH, Dobson KL, Petrie WD, Dobson SL 2019. Localized control of Aedes aegypti (Diptera: Culicidae) in Miami, FL, via inundative releases of Wolbachia-infected male mosquitoes. J. Med. Entomol. 56:1296–303
    [Google Scholar]
  81. 81. 
    Marinotti O, Jasinskiene N, Fazekas A, Scaife S, Fu GL et al. 2013. Development of a population suppression strain of the human malaria vector mosquito. Anopheles stephensi. Malaria J. 12:142
    [Google Scholar]
  82. 82. 
    Marois E, Scali C, Soichot J, Kappler C, Levashina EA, Catteruccia F 2012. High-throughput sorting of mosquito larvae for laboratory studies and for future vector control interventions. Malaria J 11:302
    [Google Scholar]
  83. 83. 
    Mashatola T, Ndo C, Koekemoer LL, Dandalo LC, Wood OR et al. 2018. A review on the progress of sex-separation techniques for sterile insect technique applications against Anopheles arabiensis. . Parasites Vectors 11:646
    [Google Scholar]
  84. 84. 
    Meredith JM, Basu S, Nimmo DD, Larget-Thiery I, Warr EL et al. 2011. Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections. PLOS ONE 6:e14587
    [Google Scholar]
  85. 85. 
    Moltini-Conclois I, Stalinski R, Tetreau G, Despres L, Lambrechts L 2018. Larval exposure to the bacterial insecticide Bti enhances dengue virus susceptibility of adult Aedes aegypti mosquitoes. Insects 9:193
    [Google Scholar]
  86. 86. 
    Moreira LA, Ito J, Ghosh A, Devenport M, Zieler H et al. 2002. Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes. J. Biol. Chem. 277:40839–43
    [Google Scholar]
  87. 87. 
    Moretti R, Marzo GA, Lampazzi E, Calvitti M 2018. Cytoplasmic incompatibility management to support Incompatible Insect Technique against Aedes albopictus. . Parasites Vectors 11:649
    [Google Scholar]
  88. 88. 
    Moretti R, Yen PS, Houe V, Lampazzi E, Desiderio A et al. 2018. Combining Wolbachia-induced sterility and virus protection to fight Aedes albopictus-borne viruses. PLOS Negl. Trop. Dis. 12:e0006626
    [Google Scholar]
  89. 89. 
    Mysore K, Li P, Wang CW, Hapairai LK, Scheel ND et al. 2019. Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes. Parasites Vectors 12:256
    [Google Scholar]
  90. 90. 
    Mysore K, Li P, Wang CW, Hapairai LK, Scheel ND et al. 2019. Characterization of a yeast interfering RNA larvicide with a target site conserved in the synaptotagmin gene of multiple disease vector mosquitoes. PLOS Negl. Trop. Dis. 13:e0007422
    [Google Scholar]
  91. 91. 
    Natl. Acad. Sci. Eng. Med 2016. Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values Washington, DC: Natl. Acad. Press
  92. 92. 
    Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini MV et al. 2019. Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control. Curr. Biol. 29:4241–48
    [Google Scholar]
  93. 93. 
    Nevill CG, Some ES, Mungala VO, Mutemi W, New L et al. 1996. Insecticide-treated bednets reduce mortality and severe morbidity from malaria among children on the Kenyan coast. Trop. Med. Int. Health 1:139–46
    [Google Scholar]
  94. 94. 
    Nimmo DD, Alphey L, Meredith JM, Eggleston P 2006. High efficiency site-specific genetic engineering of the mosquito genome. Insect Mol. Biol. 15:129–36
    [Google Scholar]
  95. 95. 
    Nolan T, Papathanos P, Windbichler N, Magnusson K, Benton J et al. 2011. Developing transgenic Anopheles mosquitoes for the sterile insect technique. Genetica 139:33–39
    [Google Scholar]
  96. 96. 
    O'Brochta DA, Pilitt KL, Harrell RA, Aluvihare C, Alford RT 2012. Gal4-based enhancer-trapping in the malaria mosquito Anopheles stephensi. . G3: Genes Genomes Genet 2:1305–15
    [Google Scholar]
  97. 97. 
    Olmo RP, Ferreira AGA, Izidoro-Toledo TC, Aguiar ERGR, de Faria IS et al. 2018. Control of dengue virus in the midgut of Aedes aegypti by ectopic expression of the dsRNA-binding protein Loqs2. Nat. Microbiol. 3:1385–93
    [Google Scholar]
  98. 98. 
    O'Neill SL, Ryan PA, Turley AP, Wilson G, Retzki K et al. 2018. Scaled deployment of Wolbachia to protect the community from dengue and other Aedes transmitted arboviruses. Gates Open Res 2:36Describes the impact of a large-scale deployment of Wolbachia-based population replacement in Australia.
    [Google Scholar]
  99. 99. 
    Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ et al. 2007. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol 5:11
    [Google Scholar]
  100. 100. 
    Pike A, Dong YM, Dizaji NB, Gacita A, Mongodin EF, Dimopoulos G 2017. Changes in the microbiota cause genetically modified Anopheles to spread in a population. Science 357:1396–99
    [Google Scholar]
  101. 101. 
    Ragavendran C, Dubey NK, Natarajan D 2017. Beauveria bassiana (Clavicipitaceae): a potent fungal agent for controlling mosquito vectors of Anopheles stephensi,. Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). RSC Adv 7:3838–51
    [Google Scholar]
  102. 102. 
    Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong YM et al. 2014. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLOS Pathog 10:e1004398
    [Google Scholar]
  103. 103. 
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8:2281–308
    [Google Scholar]
  104. 104. 
    Ranson H, Lissenden N. 2016. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol 32:187–96
    [Google Scholar]
  105. 105. 
    Ren XX, Hoiczyk E, Rasgon JL 2008. Viral paratransgenesis in the malaria vector Anopheles gambiae. . PLOS Pathog 4:e1000135
    [Google Scholar]
  106. 106. 
    Riabinina O, Task D, Marr E, Lin CC, Alford R et al. 2016. Organization of olfactory centres in the malaria mosquito Anopheles gambiae. Nat. . Commun 7:13010
    [Google Scholar]
  107. 107. 
    Ritchie SA, van den Hurk AF, Smout MJ, Staunton KM, Hoffmann AA 2018. Mission accomplished? We need a guide to the ‘post release’ world of Wolbachia for Aedes-borne disease control. Trends Parasitol 34:217–26
    [Google Scholar]
  108. 108. 
    Rojas-Pinzon PA, Dussan J. 2017. Efficacy of the vegetative cells of Lysinibacillus sphaericus for biological control of insecticide-resistant Aedes aegypti. . Parasites Vectors 10:231
    [Google Scholar]
  109. 109. 
    Ross PA, Ritchie SA, Axford JK, Hoffmann AA 2019. Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions. PLOS Negl. Trop. Dis. 13:e0007357
    [Google Scholar]
  110. 110. 
    Ross PA, Turelli M, Hoffmann AA 2019. Evolutionary ecology of Wolbachia releases for disease control. Annu. Rev. Genet. 53:93–116
    [Google Scholar]
  111. 111. 
    Ryan PA, Turley AP, Wilson G, Hurst TP, Retzki K et al. 2019. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res 3:1547
    [Google Scholar]
  112. 112. 
    Sachs J, Malaney P. 2002. The economic and social burden of malaria. Nature 415:680–85
    [Google Scholar]
  113. 113. 
    San Aw KM, Hue SM 2017. Review mode of infection of Metarhizium spp. fungus and their potential as biological control agents. J. Fungi 3:30
    [Google Scholar]
  114. 114. 
    Santos VSV, Pereira BB. 2019. Properties, toxicity and current applications of the biolarvicide spinosad. J. Toxicol. Environ. Health Part B 23:13–26
    [Google Scholar]
  115. 115. 
    Saraiva RG, Fang JR, Kang S, Anglero-Rodriguez YI, Dong YM, Dimopoulos G 2018. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein. PLOS Negl. Trop. Dis. 12:e0006443
    [Google Scholar]
  116. 116. 
    Saraiva RG, Huitt-Roehl CR, Tripathi A, Cheng YQ, Bosch J et al. 2018. Chromobacterium spp. mediate their anti-Plasmodium activity through secretion of the histone deacetylase inhibitor romidepsin. Sci. Rep. 8:6176
    [Google Scholar]
  117. 117. 
    Shane JL, Grogan CL, Cwalina C, Lampe DJ 2018. Blood meal-induced inhibition of vector-borne disease by transgenic microbiota. Nat. Commun. 9:4127
    [Google Scholar]
  118. 118. 
    Simões ML, Caragata EP, Dimopoulos G 2018. Diverse host and restriction factors regulate mosquito-pathogen interactions. Trends Parasitol 34:603–16
    [Google Scholar]
  119. 119. 
    Sreenivasamurthy SK, Dey G, Ramu M, Kumar M, Gupta MK et al. 2013. A compendium of molecules involved in vector-pathogen interactions pertaining to malaria. Malar. J. 12:216
    [Google Scholar]
  120. 120. 
    Stalinski R, Laporte F, Despres L, Tetreau G 2016. Alkaline phosphatases are involved in the response of Aedes aegypti larvae to intoxication with Bacillus thuringiensis subsp. israelensis Cry toxins. Environ. Microbiol. 18:1022–36
    [Google Scholar]
  121. 121. 
    Tetreau G, Stalinski R, David JP, Despres L 2013. Monitoring resistance to Bacillus thuringiensis subsp. israelensis in the field by performing bioassays with each Cry toxin separately. Mem. Inst. Oswaldo Cruz 108:894–900
    [Google Scholar]
  122. 122. 
    Vega-Rodriguez J, Ghosh AK, Kanzok SM, Dinglasan RR, Wang SB et al. 2014. Multiple pathways for Plasmodium ookinete invasion of the mosquito midgut. PNAS 111:E492–500
    [Google Scholar]
  123. 123. 
    Volohonsky G, Hopp AK, Saenger M, Soichot J, Scholze H et al. 2017. Transgenic expression of the anti-parasitic factor TEP1 in the malaria mosquito Anopheles gambiae. . PLOS Pathog 13:e1006113
    [Google Scholar]
  124. 124. 
    Vreysen MJB, Saleh KM, Ali MY, Abdulla AM, Zhu ZR et al. 2000. Glossina austeni (Diptera: Glossinidae) eradicated on the Island of Unguja, Zanzibar, using the sterile insect technique. J. Econ. Entomol. 93:123–35
    [Google Scholar]
  125. 125. 
    Wang SB, Dos-Santos ALA, Huang W, Liu KC, Oshaghi MA et al. 2017. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 357:1399–402Uses paratransgenesis and a vertically transmitted bacterium to control Plasmodium infection in Anopheles mosquitoes.
    [Google Scholar]
  126. 126. 
    Wang SB, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M 2012. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. PNAS 109:12734–39
    [Google Scholar]
  127. 127. 
    Windbichler N, Menichelli M, Papathanos PA, Thyme SB, Li H et al. 2011. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473:212–15
    [Google Scholar]
  128. 128. 
    Windbichler N, Papathanos PA, Crisanti A 2008. Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. . PLOS Genet 4:e1000291
    [Google Scholar]
  129. 129. 
    Yamamoto DS, Sumitani M, Kasashima K, Sezutsu H, Matsuoka H 2016. Inhibition of malaria infection in transgenic anopheline mosquitoes lacking salivary gland cells. PLOS Pathog 12:e1005872
    [Google Scholar]
  130. 130. 
    Yang J, Schleicher TR, Dong Y, Park HB, Lan J et al. 2020. Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection. J. Exp. Med. 217:e20190682
    [Google Scholar]
  131. 131. 
    Yoshida S, Ioka D, Matsuoka H, Endo H, Ishii A 2001. Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. Mol. Biochem. Parasitol. 113:89–96
    [Google Scholar]
  132. 132. 
    Yoshida S, Shimada Y, Kondoh D, Kouzuma Y, Ghosh AK et al. 2007. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development. PLOS Pathog 3:1962–70
    [Google Scholar]
  133. 133. 
    Zhang Q, Hua G, Adang MJ 2017. Effects and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae. Insect Sci 24:714–29
    [Google Scholar]
  134. 134. 
    Zhao B, Kokoza VA, Saha TT, Wang S, Roy S, Raikhel AS 2014. Regulation of the gut-specific carboxypeptidase: a study using the binary Gal4/UAS system in the mosquito Aedes aegypti. Insect Biochem. Mol. . Biol 54:1–10
    [Google Scholar]
  135. 135. 
    Zheng XY, Zhang DJ, Li YJ, Yang C, Wu Y et al. 2019. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572:56–61Describes a large-scale field deployment of Wolbachia-based population suppression combined with the SIT in China.
    [Google Scholar]
/content/journals/10.1146/annurev-micro-011320-025557
Loading
/content/journals/10.1146/annurev-micro-011320-025557
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error