1932

Abstract

Viral DNA genomes have limited coding capacity and therefore harness cellular factors to facilitate replication of their genomes and generate progeny virions. Studies of viruses and how they interact with cellular processes have historically provided seminal insights into basic biology and disease mechanisms. The replicative life cycles of many DNA viruses have been shown to engage components of the host DNA damage and repair machinery. Viruses have evolved numerous strategies to navigate the cellular DNA damage response. By hijacking and manipulating cellular replication and repair processes, DNA viruses can selectively harness or abrogate distinct components of the cellular machinery to complete their life cycles. Here, we highlight consequences for viral replication and host genome integrity during the dynamic interactions between virus and host.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092917-043534
2018-09-29
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/virology/5/1/annurev-virology-092917-043534.html?itemId=/content/journals/10.1146/annurev-virology-092917-043534&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Zeman MK, Cimprich KA 2014. Causes and consequences of replication stress. Nat. Cell Biol. 16:2–9
    [Google Scholar]
  2. 2.  Hustedt N, Durocher D 2017. The control of DNA repair by the cell cycle. Nat. Cell Biol. 19:1–9
    [Google Scholar]
  3. 3.  Marechal A, Zou L 2013. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol. 5:a012716
    [Google Scholar]
  4. 4.  Saldivar JC, Cortez D, Cimprich KA 2017. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat. Rev. Mol. Cell Biol. 18:622–36
    [Google Scholar]
  5. 5.  Hollingworth R, Grand RJ 2015. Modulation of DNA damage and repair pathways by human tumour viruses. Viruses 7:2542–91
    [Google Scholar]
  6. 6.  Luftig MA 2014. Viruses and the DNA damage response: activation and antagonism. Annu. Rev. Virol. 1:605–25
    [Google Scholar]
  7. 7.  Pancholi NJ, Price AM, Weitzman MD 2017. Take your PIKK: tumour viruses and DNA damage response pathways. Philos. Trans. R. Soc. B 372:20160269
    [Google Scholar]
  8. 8.  Weitzman MD, Lilley CE, Chaurushiya MS 2010. Genomes in conflict: maintaining genome integrity during virus infection. Annu. Rev. Microbiol. 64:61–81
    [Google Scholar]
  9. 9.  Moody CA, Laimins LA 2010. Human papillomavirus oncoproteins: pathways to transformation. Nat. Rev. Cancer 10:550–60
    [Google Scholar]
  10. 10.  Justice JL, Verhalen B, Jiang M 2015. Polyomavirus interaction with the DNA damage response. Virol. Sin. 30:122–29
    [Google Scholar]
  11. 11.  Luo Y, Qiu J 2013. Parvovirus infection-induced DNA damage response. Future Virol 8:245–57
    [Google Scholar]
  12. 12.  Majumder K, Etingov I, Pintel DJ 2017. Protoparvovirus interactions with the cellular DNA damage response. Viruses 9:323
    [Google Scholar]
  13. 13.  Hau PM, Tsao SW 2017. Epstein-Barr virus hijacks DNA damage response transducers to orchestrate its life cycle. Viruses 9:E341
    [Google Scholar]
  14. 14.  Smith S, Weller SK 2015. HSV-I and the cellular DNA damage response. Future Virol 10:383–97
    [Google Scholar]
  15. 15.  Di Domenico EG, Toma L, Bordignon V, Trento E, D'Agosto G et al. 2016. Activation of DNA damage response induced by the Kaposi's sarcoma-associated herpes virus. Int. J. Mol. Sci. 17:E854
    [Google Scholar]
  16. 16.  Gomez-Moreno A, Garaigorta U 2017. Hepatitis B virus and DNA damage response: interactions and consequences for the infection. Viruses 9:E304
    [Google Scholar]
  17. 17.  Dantuma NP, van Attikum H 2016. Spatiotemporal regulation of posttranslational modifications in the DNA damage response. EMBO J 35:6–23
    [Google Scholar]
  18. 18.  Smeenk G, Mailand N 2016. Writers, readers, and erasers of histone ubiquitylation in DNA double-strand break repair. Front. Genet. 7:122
    [Google Scholar]
  19. 19.  Moody C 2017. Mechanisms by which HPV induces a replication competent environment in differentiating keratinocytes. Viruses 9:E261
    [Google Scholar]
  20. 20.  Hoeben RC, Uil TG 2013. Adenovirus DNA replication. Cold Spring Harb. Perspect. Biol. 5:a013003
    [Google Scholar]
  21. 21.  Cotmore SF, Tattersall P 2013. Parvovirus diversity and DNA damage responses. Cold Spring Harb. Perspect. Biol. 5:a012989
    [Google Scholar]
  22. 22.  Luo Y, Lou S, Deng X, Liu Z, Li Y et al. 2011. Parvovirus B19 infection of human primary erythroid progenitor cells triggers ATR-Chk1 signaling, which promotes B19 virus replication. J. Virol. 85:8046–55
    [Google Scholar]
  23. 23.  Adeyemi RO, Landry S, Davis ME, Weitzman MD, Pintel DJ 2010. Parvovirus minute virus of mice induces a DNA damage response that facilitates viral replication. PLOS Pathog 6:e1001141
    [Google Scholar]
  24. 24.  Adeyemi RO, Pintel DJ 2014. The ATR signaling pathway is disabled during infection with the parvovirus minute virus of mice. J. Virol. 88:10189–99
    [Google Scholar]
  25. 25.  Collaco RF, Bevington JM, Bhrigu V, Kalman-Maltese V, Trempe JP 2009. Adeno-associated virus and adenovirus coinfection induces a cellular DNA damage and repair response via redundant phosphatidylinositol 3-like kinase pathways. Virology 392:24–33
    [Google Scholar]
  26. 26.  Schwartz RA, Carson CT, Schuberth C, Weitzman MD 2009. Adeno-associated virus replication induces a DNA damage response coordinated by DNA-dependent protein kinase. J. Virol. 83:6269–78
    [Google Scholar]
  27. 27.  Vogel R, Seyffert M, Strasser R, de Oliveira AP, Dresch C et al. 2012. Adeno-associated virus type 2 modulates the host DNA damage response induced by herpes simplex virus 1 during coinfection. J. Virol. 86:143–55
    [Google Scholar]
  28. 28.  Schwartz RA, Palacios JA, Cassell GD, Adam S, Giacca M, Weitzman MD 2007. The Mre11/Rad50/Nbs1 complex limits adeno-associated virus transduction and replication. J. Virol. 81:12936–45
    [Google Scholar]
  29. 29.  Millet R, Jolinon N, Nguyen XN, Berger G, Cimarelli A et al. 2015. Impact of the MRN complex on adeno-associated virus integration and replication during coinfection with herpes simplex virus 1. J. Virol. 89:6824–34
    [Google Scholar]
  30. 30.  Hein J, Boichuk S, Wu J, Cheng Y, Freire R et al. 2009. Simian virus 40 large T antigen disrupts genome integrity and activates a DNA damage response via Bub1 binding. J. Virol. 83:117–27
    [Google Scholar]
  31. 31.  Orba Y, Suzuki T, Makino Y, Kubota K, Tanaka S et al. 2010. Large T antigen promotes JC virus replication in G2-arrested cells by inducing ATM- and ATR-mediated G2 checkpoint signaling. J. Biol. Chem. 285:1544–54
    [Google Scholar]
  32. 32.  Tsang SH, Wang X, Li J, Buck CB, You J 2014. Host DNA damage response factors localize to Merkel cell polyomavirus DNA replication sites to support efficient viral DNA replication. J. Virol. 88:3285–97
    [Google Scholar]
  33. 33.  Sowd GA, Li NY, Fanning E 2013. ATM and ATR activities maintain replication fork integrity during SV40 chromatin replication. PLOS Pathog 9:e1003283
    [Google Scholar]
  34. 34.  Verhalen B, Justice JL, Imperiale MJ, Jiang M 2015. Viral DNA replication-dependent DNA damage response activation during BK polyomavirus infection. J. Virol. 89:5032–39
    [Google Scholar]
  35. 35.  Shi Y, Dodson GE, Shaikh S, Rundell K, Tibbetts RS 2005. Ataxia-telangiectasia-mutated (ATM) is a T-antigen kinase that controls SV40 viral replication in vivo. J. Biol. Chem. 280:40195–200
    [Google Scholar]
  36. 36.  Anacker DC, Gautam D, Gillespie KA, Chappell WH, Moody CA 2014. Productive replication of human papillomavirus 31 requires DNA repair factor Nbs1. J. Virol. 88:8528–44
    [Google Scholar]
  37. 37.  Gillespie KA, Mehta KP, Laimins LA, Moody CA 2012. Human papillomaviruses recruit cellular DNA repair and homologous recombination factors to viral replication centers. J. Virol. 86:9520–26
    [Google Scholar]
  38. 38.  Reinson T, Toots M, Kadaja M, Pipitch R, Allik M et al. 2013. Engagement of the ATR-dependent DNA damage response at the human papillomavirus 18 replication centers during the initial amplification. J. Virol. 87:951–64
    [Google Scholar]
  39. 39.  Chappell WH, Gautam D, Ok ST, Johnson BA, Anacker DC, Moody CA 2015. Homologous recombination repair factors Rad51 and BRCA1 are necessary for productive replication of human papillomavirus 31. J. Virol. 90:2639–52
    [Google Scholar]
  40. 40.  Fradet-Turcotte A, Bergeron-Labrecque F, Moody CA, Lehoux M, Laimins LA, Archambault J 2011. Nuclear accumulation of the papillomavirus E1 helicase blocks S-phase progression and triggers an ATM-dependent DNA damage response. J. Virol. 85:8996–9012
    [Google Scholar]
  41. 41.  Moody CA, Laimins LA 2009. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLOS Pathog 5:e1000605
    [Google Scholar]
  42. 42.  Sakakibara N, Mitra R, McBride AA 2011. The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci. J. Virol. 85:8981–95
    [Google Scholar]
  43. 43.  Lilley CE, Carson CT, Muotri AR, Gage FH, Weitzman MD 2005. DNA repair proteins affect the lifecycle of herpes simplex virus 1. PNAS 102:5844–49
    [Google Scholar]
  44. 44.  Wilkinson DE, Weller SK 2004. Recruitment of cellular recombination and repair proteins to sites of herpes simplex virus type 1 DNA replication is dependent on the composition of viral proteins within prereplicative sites and correlates with the induction of the DNA damage response. J. Virol. 78:4783–96
    [Google Scholar]
  45. 45.  Wilkinson DE, Weller SK 2006. Herpes simplex virus type I disrupts the ATR-dependent DNA-damage response during lytic infection. J. Cell Sci. 119:2695–703
    [Google Scholar]
  46. 46.  Mohni KN, Livingston CM, Cortez D, Weller SK 2010. ATR and ATRIP are recruited to herpes simplex virus type 1 replication compartments even though ATR signaling is disabled. J. Virol. 84:12152–64
    [Google Scholar]
  47. 47.  Mohni KN, Smith S, Dee AR, Schumacher AJ, Weller SK 2013. Herpes simplex virus type 1 single strand DNA binding protein and helicase/primase complex disable cellular ATR signaling. PLOS Pathog 9:e1003652
    [Google Scholar]
  48. 48.  Mohni KN, Dee AR, Smith S, Schumacher AJ, Weller SK 2013. Efficient herpes simplex virus 1 replication requires cellular ATR pathway proteins. J. Virol. 87:531–42
    [Google Scholar]
  49. 49.  Kudoh A, Fujita M, Zhang L, Shirata N, Daikoku T et al. 2005. Epstein-Barr virus lytic replication elicits ATM checkpoint signal transduction while providing an S-phase-like cellular environment. J. Biol. Chem. 280:8156–63
    [Google Scholar]
  50. 50.  Nikitin PA, Yan CM, Forte E, Bocedi A, Tourigny JP et al. 2010. An ATM/Chk2-mediated DNA damage-responsive signaling pathway suppresses Epstein-Barr virus transformation of primary human B cells. Cell Host Microbe 8:510–22
    [Google Scholar]
  51. 51.  Hafez AY, Luftig MA 2017. Characterization of the EBV-induced persistent DNA damage response. Viruses 9:E366
    [Google Scholar]
  52. 52.  Hollingworth R, Skalka GL, Stewart GS, Hislop AD, Blackbourn DJ, Grand RJ 2015. Activation of DNA damage response pathways during lytic replication of KSHV. Viruses 7:2908–27
    [Google Scholar]
  53. 53.  Shah GA, O'Shea CC 2015. Viral and cellular genomes activate distinct DNA damage responses. Cell 162:987–1002
    [Google Scholar]
  54. 54.  Lakdawala SS, Schwartz RA, Ferenchak K, Carson CT, McSharry BP et al. 2008. Differential requirements of the C terminus of Nbs1 in suppressing adenovirus DNA replication and promoting concatemer formation. J. Virol. 82:8362–72
    [Google Scholar]
  55. 55.  Evans JD, Hearing P 2005. Relocalization of the Mre11-Rad50-Nbs1 complex by the adenovirus E4 ORF3 protein is required for viral replication. J. Virol. 79:6207–15
    [Google Scholar]
  56. 56.  Mathew SS, Bridge E 2008. Nbs1-dependent binding of Mre11 to adenovirus E4 mutant viral DNA is important for inhibiting DNA replication. Virology 374:11–22
    [Google Scholar]
  57. 57.  Stracker TH, Carson CT, Weitzman MD 2002. Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418:348–52
    [Google Scholar]
  58. 58.  Boyer J, Rohleder K, Ketner G 1999. Adenovirus E4 34k and E4 11k inhibit double strand break repair and are physically associated with the cellular DNA-dependent protein kinase. Virology 263:307–12
    [Google Scholar]
  59. 59.  Baker A, Rohleder KJ, Hanakahi LA, Ketner G 2007. Adenovirus E4 34k and E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation. J. Virol. 81:7034–40
    [Google Scholar]
  60. 60.  Carson CT, Orazio NI, Lee DV, Suh J, Bekker-Jensen S et al. 2009. Mislocalization of the MRN complex prevents ATR signaling during adenovirus infection. EMBO J 28:652–62
    [Google Scholar]
  61. 61.  Blackford AN, Patel RN, Forrester NA, Theil K, Groitl P et al. 2010. Adenovirus 12 E4orf6 inhibits ATR activation by promoting TOPBP1 degradation. PNAS 107:12251–56
    [Google Scholar]
  62. 62.  Gautam D, Bridge E 2013. The kinase activity of ataxia-telangiectasia mutated interferes with adenovirus E4 mutant DNA replication. J. Virol. 87:8687–96
    [Google Scholar]
  63. 63.  Cheng CY, Gilson T, Dallaire F, Ketner G, Branton PE, Blanchette P 2011. The E4orf6/E1B55K E3 ubiquitin ligase complexes of human adenoviruses exhibit heterogeneity in composition and substrate specificity. J. Virol. 85:765–75
    [Google Scholar]
  64. 64.  Pancholi NJ, Weitzman MD 2018. Serotype-specific restriction of wild-type adenoviruses by the cellular Mre11-Rad50-Nbs1 complex. Virology 518:221–31
    [Google Scholar]
  65. 65.  Komatsu T, Nagata K, Wodrich H 2016. The role of nuclear antiviral factors against invading DNA viruses: the immediate fate of incoming viral genomes. Viruses 8:E290
    [Google Scholar]
  66. 66.  Orzalli MH, Knipe DM 2014. Cellular sensing of viral DNA and viral evasion mechanisms. Annu. Rev. Microbiol. 68:477–92
    [Google Scholar]
  67. 67.  Smith S, Reuven N, Mohni KN, Schumacher AJ, Weller SK 2014. Structure of the herpes simplex virus 1 genome: manipulation of nicks and gaps can abrogate infectivity and alter the cellular DNA damage response. J. Virol. 88:10146–56
    [Google Scholar]
  68. 68.  Lilley CE, Chaurushiya MS, Boutell C, Everett RD, Weitzman MD 2011. The intrinsic antiviral defense to incoming HSV-1 genomes includes specific DNA repair proteins and is counteracted by the viral protein ICP0. PLOS Pathog 7:e1002084
    [Google Scholar]
  69. 69.  Lilley CE, Chaurushiya MS, Boutell C, Landry S, Suh J et al. 2010. A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J 29:943–55
    [Google Scholar]
  70. 70.  Alandijany T, Roberts APE, Conn KL, Loney C, McFarlane S et al. 2018. Distinct temporal roles for the promyelocytic leukaemia (PML) protein in the sequential regulation of intracellular host immunity to HSV-1 infection. PLOS Pathog 14:e1006769
    [Google Scholar]
  71. 71.  Boutell C, Everett RD 2013. Regulation of alphaherpesvirus infections by the ICP0 family of proteins. J. Gen. Virol. 94:465–81
    [Google Scholar]
  72. 72.  Schumacher AJ, Mohni KN, Kan Y, Hendrickson EA, Stark JM, Weller SK 2012. The HSV-1 exonuclease, UL12, stimulates recombination by a single strand annealing mechanism. PLOS Pathog 8:e1002862
    [Google Scholar]
  73. 73.  Lees-Miller SP, Long MC, Kilvert MA, Lam V, Rice SA, Spencer CA 1996. Attenuation of DNA-dependent protein kinase activity and its catalytic subunit by the herpes simplex virus type 1 transactivator ICP0. J. Virol. 70:7471–77
    [Google Scholar]
  74. 74.  Brown JC 2017. Herpes simplex virus latency: the DNA repair-centered pathway. Adv. Virol. 2017:7028194
    [Google Scholar]
  75. 75.  Pan D, Flores O, Umbach JL, Pesola JM, Bentley P et al. 2014. A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency. Cell Host Microbe 15:446–56
    [Google Scholar]
  76. 76.  Singh VV, Dutta D, Ansari MA, Dutta S, Chandran B 2014. Kaposi's sarcoma-associated herpesvirus induces the ATM and H2AX DNA damage response early during de novo infection of primary endothelial cells, which play roles in latency establishment. J. Virol. 88:2821–34
    [Google Scholar]
  77. 77.  Sherry MR, Hay TJM, Gulak MA, Nassiri A, Finnen RL, Banfield BW 2017. The herpesvirus nuclear egress complex component, UL31, can be recruited to sites of DNA damage through poly-ADP ribose binding. Sci. Rep. 7:1882
    [Google Scholar]
  78. 78.  Leidal AM, Pringle ES, McCormick C 2012. Evasion of oncogene-induced senescence by gammaherpesviruses. Curr. Opin. Virol. 2:748–54
    [Google Scholar]
  79. 79.  Gruhne B, Kamranvar SA, Masucci MG, Sompallae R 2009. EBV and genomic instability—a new look at the role of the virus in the pathogenesis of Burkitt's lymphoma. Semin. Cancer Biol. 19:394–400
    [Google Scholar]
  80. 80.  Gruhne B, Sompallae R, Masucci MG 2009. Three Epstein-Barr virus latency proteins independently promote genomic instability by inducing DNA damage, inhibiting DNA repair and inactivating cell cycle checkpoints. Oncogene 28:3997–4008
    [Google Scholar]
  81. 81.  Duensing S, Munger K 2002. The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res 62:7075–82
    [Google Scholar]
  82. 82.  Cassel AP, Barcellos RB, da Silva CM, de Matos Almeida SE, Rossetti ML 2014. Association between human papillomavirus (HPV) DNA and micronuclei in normal cervical cytology. Genet. Mol. Biol. 37:360–63
    [Google Scholar]
  83. 83.  Duensing S, Munger K 2003. The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. J. Virol. 77:12331–35
    [Google Scholar]
  84. 84.  Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I et al. 2014. Landscape of genomic alterations in cervical carcinomas. Nature 506:371–75
    [Google Scholar]
  85. 85.  Bester AC, Roniger M, Oren YS, Im MM, Sarni D et al. 2011. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435–46
    [Google Scholar]
  86. 86.  Spriggs CC, Laimins LA 2017. FANCD2 binds human papillomavirus genomes and associates with a distinct set of DNA repair proteins to regulate viral replication. mBio 8:e02340–16
    [Google Scholar]
  87. 87.  Park JW, Pitot HC, Strati K, Spardy N, Duensing S et al. 2010. Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res 70:9959–68
    [Google Scholar]
  88. 88.  Khoury JD, Tannir NM, Williams MD, Chen Y, Yao H et al. 2013. Landscape of DNA virus associations across human malignant cancers: analysis of 3,775 cases using RNA-Seq. J. Virol. 87:8916–26
    [Google Scholar]
  89. 89.  Parfenov M, Pedamallu CS, Gehlenborg N, Freeman SS, Danilova L et al. 2014. Characterization of HPV and host genome interactions in primary head and neck cancers. PNAS 111:15544–49
    [Google Scholar]
  90. 90.  Akagi K, Li J, Broutian TR, Padilla-Nash H, Xiao W et al. 2014. Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res 24:185–99
    [Google Scholar]
  91. 91.  Kadaja M, Isok-Paas H, Laos T, Ustav E, Ustav M 2009. Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLOS Pathog 5:e1000397
    [Google Scholar]
  92. 92.  Cantalupo PG, Katz JP, Pipas JM 2018. Viral sequences in human cancer. Virology 513:208–16
    [Google Scholar]
  93. 93.  Puvion-Dutilleul F, Puvion E 1990. Replicating single-stranded adenovirus type 5 DNA molecules accumulate within well-delimited intranuclear areas of lytically infected HeLa cells. Eur. J. Cell Biol. 52:379–88
    [Google Scholar]
  94. 94.  Quinlan MP, Chen LB, Knipe DM 1984. The intranuclear location of a herpes simplex virus DNA-binding protein is determined by the status of viral DNA replication. Cell 36:857–68
    [Google Scholar]
  95. 95.  Schmid M, Speiseder T, Dobner T, Gonzalez RA 2014. DNA virus replication compartments. J. Virol. 88:1404–20
    [Google Scholar]
  96. 96.  Tolonen N, Doglio L, Schleich S, Krijnse Locker J 2001. Vaccinia virus DNA replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei. Mol. Biol. Cell 12:2031–46
    [Google Scholar]
  97. 97.  Ruiz Z, Mihaylov IS, Cotmore SF, Tattersall P 2011. Recruitment of DNA replication and damage response proteins to viral replication centers during infection with NS2 mutants of minute virus of mice (MVM). Virology 410:375–84
    [Google Scholar]
  98. 98.  Weitzman MD, Fisher KJ, Wilson JM 1996. Recruitment of wild-type and recombinant adeno-associated virus into adenovirus replication centers. J. Virol. 70:1845–54
    [Google Scholar]
  99. 99.  Nash K, Chen W, Salganik M, Muzyczka N 2009. Identification of cellular proteins that interact with the adeno-associated virus Rep protein. J. Virol. 83:454–69
    [Google Scholar]
  100. 100.  Nicolas A, Alazard-Dany N, Biollay C, Arata L, Jolinon N et al. 2010. Identification of Rep-associated factors in herpes simplex virus type 1-induced adeno-associated virus type 2 replication compartments. J. Virol. 84:8871–87
    [Google Scholar]
  101. 101.  Jiang M, Zhao L, Gamez M, Imperiale MJ 2012. Roles of ATM and ATR-mediated DNA damage responses during lytic BK polyomavirus infection. PLOS Pathog 8:e1002898
    [Google Scholar]
  102. 102.  Li J, Wang X, Diaz J, Tsang SH, Buck CB, You J 2013. Merkel cell polyomavirus large T antigen disrupts host genomic integrity and inhibits cellular proliferation. J. Virol. 87:9173–88
    [Google Scholar]
  103. 103.  Zhao X, Madden-Fuentes RJ, Lou BX, Pipas JM, Gerhardt J et al. 2008. Ataxia telangiectasia-mutated damage-signaling kinase- and proteasome-dependent destruction of Mre11-Rad50-Nbs1 subunits in simian virus 40-infected primate cells. J. Virol. 82:5316–28
    [Google Scholar]
  104. 104.  Heiser K, Nicholas C, Garcea RL 2016. Activation of DNA damage repair pathways by murine polyomavirus. Virology 497:346–56
    [Google Scholar]
  105. 105.  Sakakibara N, Chen D, Jang MK, Kang DW, Luecke HF et al. 2013. Brd4 is displaced from HPV replication factories as they expand and amplify viral DNA. PLOS Pathog 9:e1003777
    [Google Scholar]
  106. 106.  Taylor TJ, Knipe DM 2004. Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. J. Virol. 78:5856–66
    [Google Scholar]
  107. 107.  Hollingworth R, Horniblow RD, Forrest C, Stewart GS, Grand RJ 2017. Localization of double-strand break repair proteins to viral replication compartments following lytic reactivation of Kaposi's sarcoma-associated herpesvirus. J. Virol. 91:e00930–17
    [Google Scholar]
  108. 108.  Reyes ED, Kulej K, Pancholi NJ, Akhtar LN, Avgousti DC et al. 2017. Identifying host factors associated with DNA replicated during virus infection. Mol. Cell. Proteom. 16:2079–97
    [Google Scholar]
  109. 109.  Dembowski JA, DeLuca NA 2015. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes. PLOS Pathog 11:e1004939
    [Google Scholar]
  110. 110.  Dembowski JA, DeLuca NA 2017. Purification of viral DNA for the identification of associated viral and cellular proteins. J. Vis. Exp. 2017:126 https://doi.org/10.3791/56374
    [Crossref] [Google Scholar]
  111. 111.  Sowd GA, Mody D, Eggold J, Cortez D, Friedman KL, Fanning E 2014. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products. PLOS Pathog 10:e1004536
    [Google Scholar]
  112. 112.  Stracker TH, Lee DV, Carson CT, Araujo FD, Ornelles DA, Weitzman MD 2005. Serotype-specific reorganization of the Mre11 complex by adenoviral E4orf3 proteins. J. Virol. 79:6664–73
    [Google Scholar]
  113. 113.  Adeyemi RO, Fuller MS, Pintel DJ 2014. Efficient parvovirus replication requires CRL4Cdt2-targeted depletion of p21 to prevent its inhibitory interaction with PCNA. PLOS Pathog 10:e1004055
    [Google Scholar]
  114. 114.  Jonhnson BA, Allor HL, Moody CA 2017. The Rb binding protein of HPV31 E7 is required to maintain high levels of DNA repair factors in infected cells. Virology 500:22–34
    [Google Scholar]
  115. 115.  Wallace NA, Khanal S, Robinson KL, Wendel SO, Messer JJ, Galloway DA 2017. High-risk alphapapillomavirus oncogenes impair the homologous recombination pathway. J. Virol. 91:e01084–17
    [Google Scholar]
  116. 116.  Senkevich TG, Katsafanas GC, Weisberg A, Olano LR, Moss B 2017. Identification of vaccinia virus replisome and transcriptome proteins by isolation of proteins on nascent DNA coupled with mass spectrometry. J. Virol. 91:e01015–17
    [Google Scholar]
  117. 117.  Ferguson BJ, Mansur DS, Peters NE, Ren H, Smith GL 2012. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. eLife 1:e00047
    [Google Scholar]
  118. 118.  Trigg BJ, Lauer KB, Fernandes Dos Santos P, Coleman H, Balmus G et al. 2017. The non-homologous end joining protein PAXX acts to restrict HSV-1 infection. Viruses 9:E342
    [Google Scholar]
  119. 119.  Kondo T, Kobayashi J, Saitoh T, Maruyama K, Ishii KJ et al. 2013. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. PNAS 110:2969–74
    [Google Scholar]
  120. 120.  Mariggio G, Koch S, Zhang G, Weidner-Glunde M, Ruckert J et al. 2017. Kaposi sarcoma herpesvirus (KSHV) latency-associated nuclear antigen (LANA) recruits components of the MRN (Mre11-Rad50-NBS1) repair complex to modulate an innate immune signaling pathway and viral latency. PLOS Pathog 13:e1006335
    [Google Scholar]
  121. 121.  Araujo FD, Stracker TH, Carson CT, Lee DV, Weitzman MD 2005. Adenovirus type 5 E4orf3 protein targets the Mre11 complex to cytoplasmic aggresomes. J. Virol. 79:11382–91
    [Google Scholar]
  122. 122.  Liu Y, Shevchenko A, Shevchenko A, Berk AJ 2005. Adenovirus exploits the cellular aggresome response to accelerate inactivation of the MRN complex. J. Virol. 79:14004–16
    [Google Scholar]
  123. 123.  Lopez P, Van Sant C, Roizman B 2001. Requirements for the nuclear-cytoplasmic translocation of infected-cell protein 0 of herpes simplex virus 1. J. Virol. 75:3832–40
    [Google Scholar]
  124. 124.  Scherer M, Stamminger T 2016. Emerging role of PML nuclear bodies in innate immune signaling. J. Virol. 90:5850–54
    [Google Scholar]
  125. 125.  Wilson MD, Durocher D 2017. Reading chromatin signatures after DNA double-strand breaks. Philos. Trans. R. Soc. B 372:20160280
    [Google Scholar]
  126. 126.  Li R, Zhu J, Xie Z, Liao G, Liu J et al. 2011. Conserved herpesvirus kinases target the DNA damage response pathway and TIP60 histone acetyltransferase to promote virus replication. Cell Host Microbe 10:390–400
    [Google Scholar]
  127. 127.  Jackson BR, Noerenberg M, Whitehouse A 2014. A novel mechanism inducing genome instability in Kaposi's sarcoma-associated herpesvirus infected cells. PLOS Pathog 10:e1004098
    [Google Scholar]
  128. 128.  Jha HC, Upadhyay SK, Prasad MAJ, Lu J, Cai Q et al. 2013. H2AX phosphorylation is important for LANA-mediated Kaposi's sarcoma-associated herpesvirus episome persistence. J. Virol. 87:5255–69
    [Google Scholar]
  129. 129.  Botting C, Lu X, Triezenberg SJ 2016. H2AX phosphorylation and DNA damage kinase activity are dispensable for herpes simplex virus replication. Virol. J. 13:15
    [Google Scholar]
  130. 130.  Smith JA, Haberstroh FS, White EA, Livingston DM, DeCaprio JA, Howley PM 2014. SMCX and components of the TIP60 complex contribute to E2 regulation of the HPV E6/E7 promoter. Virology 468–70:311–21
    [Google Scholar]
  131. 131.  Hong S, Dutta A, Laimins LA 2015. The acetyltransferase Tip60 is a critical regulator of the differentiation-dependent amplification of human papillomaviruses. J. Virol. 89:4668–75
    [Google Scholar]
  132. 132.  Gupta A, Jha S, Engel DA, Ornelles DA, Dutta A 2013. Tip60 degradation by adenovirus relieves transcriptional repression of viral transcriptional activator EIA. Oncogene 32:5017–25
    [Google Scholar]
  133. 133.  Giberson AN, Davidson AR, Parks RJ 2012. Chromatin structure of adenovirus DNA throughout infection. Nucleic Acids Res 40:2369–76
    [Google Scholar]
  134. 134.  Karen KA, Hearing P 2011. Adenovirus core protein VII protects the viral genome from a DNA damage response at early times after infection. J. Virol. 85:4135–42
    [Google Scholar]
  135. 135.  Avgousti DC, Della Fera AN, Otter CJ, Herrmann C, Pancholi NJ, Weitzman MD 2017. Adenovirus core protein VII down-regulates the DNA damage response on the host genome. J. Virol. 91:e01089–17
    [Google Scholar]
  136. 136.  Avgousti DC, Herrmann C, Kulej K, Pancholi NJ, Sekulic N et al. 2016. A core viral protein binds host nucleosomes to sequester immune danger signals. Nature 535:173–77
    [Google Scholar]
  137. 137.  Kalousi A, Hoffbeck AS, Selemenakis PN, Pinder J, Savage KI et al. 2015. The nuclear oncogene SET controls DNA repair by KAP1 and HP1 retention to chromatin. Cell Rep 11:149–63
    [Google Scholar]
  138. 138.  Speck SH, Ganem D 2010. Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell Host Microbe 8:100–15
    [Google Scholar]
  139. 139.  Iftner T, Haedicke-Jarboui J, Wu SY, Chiang CM 2017. Involvement of Brd4 in different steps of the papillomavirus life cycle. Virus Res 231:76–82
    [Google Scholar]
  140. 140.  Weidner-Glunde M, Mariggio G, Schulz TF 2017. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen: replicating and shielding viral DNA during viral persistence. J. Virol. 91:e01083–16
    [Google Scholar]
  141. 141.  Oh HS, Bryant KF, Nieland TJ, Mazumder A, Bagul M et al. 2014. A targeted RNA interference screen reveals novel epigenetic factors that regulate herpesviral gene expression. mBio 5:e01086–13
    [Google Scholar]
  142. 142.  Leight ER, Sugden B 2000. EBNA-1: a protein pivotal to latent infection by Epstein-Barr virus. Rev. Med. Virol. 10:83–100
    [Google Scholar]
  143. 143.  Moquin SA, Thomas S, Whalen S, Warburton A, Fernandez SG et al. 2018. The Epstein-Barr virus episome maneuvers between nuclear chromatin compartments during reactivation. J. Virol. 92:e01413–17
    [Google Scholar]
  144. 144.  Gunther T, Grundhoff A 2017. Epigenetic manipulation of host chromatin by Kaposi sarcoma-associated herpesvirus: a tumor-promoting factor?. Curr. Opin. Virol. 26:104–11
    [Google Scholar]
  145. 145.  West MJ 2017. Chromatin reorganisation in Epstein-Barr virus-infected cells and its role in cancer development. Curr. Opin. Virol. 26:149–55
    [Google Scholar]
  146. 146.  Hagemeier SR, Barlow EA, Meng Q, Kenney SC 2012. The cellular ataxia telangiectasia-mutated kinase promotes Epstein-Barr virus lytic reactivation in response to multiple different types of lytic reactivation-inducing stimuli. J. Virol. 86:13360–70
    [Google Scholar]
  147. 147.  Kaidi A, Jackson SP 2013. KAT5 tyrosine phosphorylation couples chromatin sensing to ATM signalling. Nature 498:70–74
    [Google Scholar]
  148. 148.  Jacquet K, Fradet-Turcotte A, Avvakumov N, Lambert JP, Roques C et al. 2016. The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through direct H4K20me binding and H2AK15 acetylation. Mol. Cell 62:409–21
    [Google Scholar]
  149. 149.  Dabin J, Fortuny A, Polo SE 2016. Epigenome maintenance in response to DNA damage. Mol. Cell 62:712–27
    [Google Scholar]
  150. 150.  Soto D, Song C, McLaughlin-Drubin ME 2017. Epigenetic alterations in human papillomavirus-associated cancers. Viruses 9:E248
    [Google Scholar]
  151. 151.  Soto D, Barton C, Munger K, McLaughlin-Drubin ME 2017. KDM6A addiction of cervical carcinoma cell lines is triggered by E7 and mediated by p21CIP1 suppression of replication stress. PLOS Pathog 13:e1006661
    [Google Scholar]
  152. 152.  Avvakumov N, Cote J 2007. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26:5395–407
    [Google Scholar]
  153. 153.  Subbaiah VK, Zhang Y, Rajagopalan D, Abdullah LN, Yeo-Teh NS et al. 2016. E3 ligase EDD1/UBR5 is utilized by the HPV E6 oncogene to destabilize tumor suppressor TIP60. Oncogene 35:2062–74
    [Google Scholar]
  154. 154.  Cheng J, Park DE, Berrios C, White EA, Arora R et al. 2017. Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis. PLOS Pathog 13:e1006668
    [Google Scholar]
  155. 155.  Jang MK, Shen K, McBride AA 2014. Papillomavirus genomes associate with BRD4 to replicate at fragile sites in the host genome. PLOS Pathog 10:e1004117
    [Google Scholar]
  156. 156.  Conn KL, Schang LM 2013. Chromatin dynamics during lytic infection with herpes simplex virus 1. Viruses 5:1758–86
    [Google Scholar]
  157. 157.  Rai TS, Glass M, Cole JJ, Rather MI, Marsden M et al. 2017. Histone chaperone HIRA deposits histone H3.3 onto foreign viral DNA and contributes to anti-viral intrinsic immunity. Nucleic Acids Res 45:11673–83
    [Google Scholar]
  158. 158.  Ryan EL, Hollingworth R, Grand RJ 2016. Activation of the DNA damage response by RNA viruses. Biomolecules 6:2
    [Google Scholar]
  159. 159.  Lou DI, Kim ET, Meyerson NR, Pancholi NJ, Mohni KN et al. 2016. An intrinsically disordered region of the DNA repair protein Nbs1 is a species-specific barrier to herpes simplex virus 1 in primates. Cell Host Microbe 20:178–88
    [Google Scholar]
  160. 160.  Hong S, Laimins LA 2017. Manipulation of the innate immune response by human papillomaviruses. Virus Res 231:34–40
    [Google Scholar]
  161. 161.  Sakakibara N, Mitra R, McBride AA 2011. The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci. J. Virol. 85:8981–95
    [Google Scholar]
  162. 162.  Lilley CE, Schwartz RA, Weitzman MD 2007. Using or abusing: viruses and the cellular DNA damage response. Trends Microbiol 15:119–26
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092917-043534
Loading
/content/journals/10.1146/annurev-virology-092917-043534
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error